Telegram Group & Telegram Channel
🆚 Как сравниваются методы перерасчёта градиента и focal loss при работе с несбалансированными классами

🔘 Focal loss добавляет коэффициент, который уменьшает вклад уже хорошо классифицированных примеров, тем самым фокусируя обучение на сложных, часто ошибочно классифицируемых объектах. Это особенно полезно, когда модель быстро обучается на «лёгких» примерах и игнорирует «трудные».

🔘 Gradient re-scaling (пересчёт градиента с учётом частоты классов) нацелен на устранение дисбаланса между классами, регулируя вклад каждого класса в градиент. Часто это реализуется как взвешивание классов.

📍 Сравнение:
— Focal loss фокусируется на сложности примеров, а не на частоте классов.
— Gradient re-scaling напрямую учитывает частоту классов, но не различает лёгкие и трудные примеры внутри одного класса.

В задачах с сильным дисбалансом имеет смысл комбинировать оба метода — использовать пересчёт градиентов по классам и применять focal loss, чтобы дополнительно усилить обучение на сложных примерах.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/926
Create:
Last Update:

🆚 Как сравниваются методы перерасчёта градиента и focal loss при работе с несбалансированными классами

🔘 Focal loss добавляет коэффициент, который уменьшает вклад уже хорошо классифицированных примеров, тем самым фокусируя обучение на сложных, часто ошибочно классифицируемых объектах. Это особенно полезно, когда модель быстро обучается на «лёгких» примерах и игнорирует «трудные».

🔘 Gradient re-scaling (пересчёт градиента с учётом частоты классов) нацелен на устранение дисбаланса между классами, регулируя вклад каждого класса в градиент. Часто это реализуется как взвешивание классов.

📍 Сравнение:
— Focal loss фокусируется на сложности примеров, а не на частоте классов.
— Gradient re-scaling напрямую учитывает частоту классов, но не различает лёгкие и трудные примеры внутри одного класса.

В задачах с сильным дисбалансом имеет смысл комбинировать оба метода — использовать пересчёт градиентов по классам и применять focal loss, чтобы дополнительно усилить обучение на сложных примерах.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/926

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Библиотека собеса по Data Science | вопросы с собеседований from ye


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA